
N88- 15622
r) A, .

1987

NASA/AS_ SUMMER FACULTY RESEARCH FELLOWSHIP

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

CAN SPACE STATION SOFTWARE

BE SPECIFIED THROUGH ADA?

Prepared By:

Academic Rank:

University and Department:

NASA/MSFC:
Laboratory:

Division:

Branch:

NASA Colleagues

Date:

Contract No.:

Arthur Knoebel

Professor

New Mexico State University

Mathematical Sciences

Information and Electronic

Systems

Software and Data Management

Systems Software

John W. Wolfsberger

Robert L. Stevens

August 20, 1987

The University of Alabama

in Huntsville

NGT-01-008-021

XXII

ABSTRACT

Programming of the Space Station is to be done in Ada.

A breadboard of selected parts of the work package for

Marshall Space Flight Center is to be built, and programming

this small part will be a good testing ground for Ada. One

coding of the upper levels of the design brings out several
problems with top-down design when it is to be carried out

strictly within the language. Ada is evaluated on the

basis of this experience, and the points raise are compared

with other people's experience as related in the literature.

Rapid prototyping is another approach to the initial

programming; several different kinds of prototypes are

discussed, and compared with the art of specification.

Some solutions are proposed and a number of recommendations

presented.

ACKNOWLEDGEMENTS

Many thanks are due many people. Without attempting

to mention everyone, I will simply express my gratitude to

John Wolfsberger, Robert Stevens and David Aichele for

making it possible for me to be here another summer, and to

Ellen Williams and Catherine White for their help in

learning to use the computers in the Language Laboratory.

XXII-i

TABLE OF CONTENTS

I . Introduction

The Problem

Results

Overview

Ada as a Stimulant

II. Background

Space Station

Request for Proposal

Breadboard

Specifying versus Prototyping

III. Programming

Philosophies and Styles

A Program

Another Approach

Comments

IV. Critique

In Praise of Ada

Software Difficulties

Hardware Specifications

V. Solutions

Recommendations

Specification

Prototyping Language

Other

VI. Summary

References

XXII-ii

I. INTRODUCTION

The Problem. The Space Station is to be programmed in
Ada. How well will this relatively new and untried
language fare? Selected parts of the Space Station are to
built on a breadboard. Now may be the time to start
programming this model to see how well Ada will work out.

In particular, can Ada be used to specify or prototype the

software? If not, when should Ada be introduced into the

life cycle?

Results. Separate compilation of the specifications

and bodies of subprograms in Ada makes possible top-down

design of the Space Station software. However, one is not

free to cut off the coding for a procedure or the

declaration of a data type indiscriminately. Thus to go a

ways in the coding, one needs to know something of the

configuration of the computers on which the software is to

run. Moreover, one needs to know something of the data

flow and the nature of the data types to be used for input

and output. Since this information was not available, only

a little bit of code could be produced. Crucial to

obtaining good coding is knowing when to start programming

on such a large project. From this viewpoint this summer

project is premature.

The Ada library, into which compiled units go, has no

explicit structure. There are implicit dependencies of one

unit on others, but the progralmner needs help from the

software development environment to keep all this straight.

Connected with this is what style of programming should

be used: should it be hierarchical, with a deep tree

structure, or should it be like an alphabet soup with a

large number of separate tasks and subprograms?

The fundamental recommendation is to defer coding in

Ada until after the traditional techniques of specification

and design have gotten the software organized.

Overview. We review the background of the Space

Station, where the project is now, and the role of Ada in

it. Next is presented several philosophies of programming,

XXII-I

particularly as regards Ada.
by a sample program.

One of these is illustrated

Out of this we present a critique of Ada and compare

our observations with those already presented in the

literature. A number of solutions to problems with Ada are

given.

Ada as a Stimulant. This introduction closes with a

comment about this writer's experience with Ada this summer

and his reaction to it. More controversy surrounds Ada

than any other programming language. Much has been written

about its merits and demerits, as well as more generally

about what language features and combinations of them are

really feasible. Quite possibly, its eventual value will

be seen more in the high quality discussions and debates it

has engendered and in the resulting clarification of

software issues rather than in its use in coding. This

leads this writer to suggest that every ten to twelve years

a new truly general purpose language should be designed,

building on recent software experience and on projected

advances in hardware. Of necessity no one person can be an

expert in all features; hence the need for a panel again to

design it and achieve a consensus to ensure widespread use.

XXII-2

II. BACKGROUND

Space Station. President Reagan, proposed in his

State of the Union message in 1984 a permanently manned

earth satellite orbiting the earth. Congress approved

this, phases A and B are completed, and now NASA is

reviewing the proposals for phases C and D to determine

which contractors will design it in detail and build it.

The work is split into four work packages, each the

responsibility of a separate NASA site. Marshall Space

Flight Center is to oversee the Laboratory, Logistics and

Habitation modules, plus related work. For these

contracts, Boeing and Martin-Marietta have submitted bids.

Ada has been mandated as the programming language for the

Space Station•

Request for Proposal. In the Request for Proposal for

phases C and D we find the Software Requirements

Specification of the Laboratory Module. To give a flavor

of the detail now known in the Space Station so we can

illustrate in the next section the extent to which this can

be converted to Ada code, we show a small section of this

document [RFP] where it outlines ECLSS, the Environmental

Control and Life Support System. We quote from pp. 18-22

and indicate by ellipsis those interior portions which we

are omitting.

"3.4.7 ECLSS Temperature & Humidity Control (THC)

3.4.8 ECLSS Atmosphere Control and Supply (ACS)

3.4.9 ECLSS Atmospheric Revitalization (AR)

3.4.9.1 Inputs

The ECLSS AR software shall accept the following input:

a. atmospheric makeup range limits for carbon dioxide and

contaminants in the module atmosphere.

b . atmospheric makeup sensor data for carbon dioxide and

contaminants in the module atmosphere.

XXII-3

c• AR equipment performance and status sensor data.

d . requests for subsystem initiation, control, and

reconfiguration.

3.4.9.2 Processing

3.4.9.3 Outputs

S.4.10 ECLSS Fire Detection and Suppression (FDS)

3.4.11ECLSS Water Recovery and Management (WRM)

Breadboard. Even though the contracts for the

detailed design and construction have yet to be let out, a

breadboard of selected features of the Space Station is

under design now in the Systems Analysis and Integration

Laboratory in building 4610. The Software supporting it

will be written by the Information and Electronic Systems

Laboratory.

Three computers are to be used: A Microvax II for the

Data Management System, a Sun Workstation for displays and

user interaction, and a third for the simulator of the

physical systems.

Specifying versus Prototyping. At their extremes

these two very different choices for top-down design are

described in the article [BGS]:

"Specifying: Develop a requirements specification

for the product. Develop a design specification to

implement the requirements. Develop the code to

implement the design. Again, rework the resulting

product as necessary•

Frototyping: Build prototype versions of parts of

the product. Exercise the prototype parts to

determine how best to) implement the operational

product. Proceed to build the operational product, and

again rework it as necessary•

The authors of this stimulating article go on to

describe an experiment conducted to compare these two modes

of software design. They conclude that prototyping is

definitely cheaper but tends to produce less functional

code. In more detail, to again quote them on the relative

merits, they cite these benefits of prototyping:

XXII-4

"products with better human-machine interfaces;
always having something that works."

Three negative effects of prototyping were:
"proportionally less effort planning and

designing, and proportionally more testing and fixing;
more difficult integration due to lack of

interface specifications;
a less coherent design."

See also section 7 of the paper [HI] for more
trade-offs.

There are two species of prototyping: vertical and
horizontal. The vertical does only selected parts of the
project but does those in detail. The horizontal does
something on all tasks but only crudely. It is important
to know at the outset which style one wishes to follow.

The book of R. J. A. Buhr has a decription in section

1.2 of the software life cycle initiated by specification.

Clearly the life cycle will be different for prototyping.

XXII-5

III. P_ING

Philosophies and Styles. While Ada encourages and
even enforces good programming practices, there is much
leeway left as to how an individual programmer may develop
his coding from initial conception to finished product.
Since NASA's Space Station is definitely a collective and
not an individual effort, considerable attention should be
paid to formulating a common style of top-down design of
software which is compatible with Ada.

First consider two philosophies. The first is to make
use of the facility in Ada for separate compilation. In
Ada specifications and bodies of subprograms may be compiled
individually as they are written. This allows the deferral
of decisions while at the same time coding may be started.
It also allows, to some extent, the top-down specification
of the software with no modification of code already
produced.

The second philosophy is to allow for modification of
existing code in order to fill out packages and subprograms
with tasks. This requires new compilation, not only of the
particular unit being recompiled, but also of all units
which depend upon it. This is one its disadvantages. The
obvious advantage is that more structure can be exhibited
within the code itself.

We illustrate the second style of programming
extensively, and then comment on the first.

A Program. We illustrate the second philosophy by
following quite closely the portion of the Request for
Proposal that was excerpted in the previous chapter. Our
top-mo_t package for the Environmental Control and Life

Support System is simplicity itself.

package ECLSS is

end ECLSS;

This is compilable. We introduce the components of

ECLSS by adding more packages inside this one.

package ECLSS is

package TRC is

XXII-6

end TRC;

package ACS is

end ACS;

package AR is

end AR;

package FDS is

end FDS;

end ECLSS;

We recompile to check syntax. By way of example on how

to proceed, we will refine the package AR. As the RFP

lists three parts: INPUT, PROCESSING. AND OUTPUT, these are

entered as packages within AR in the obvious way.

Let's refine INPUT, ignoring the other packages. We

could proceed by introducing more packages, but it is seems

appropriate now to introduce tasks, since we want concurrent

activity of some parts of INPUT.

package AR is

package INPUT is

task ATMOS_RANGE_LIMITS;

task ATMOS_SENSOR;

task STATUS;
task REQUESTS;

end INPUT;

package PROCESSING is

end PROCESSING;

package OUTPUT is

end OUTPUT;

end AR;

Again this compilable, i.e., syntactically correct.

The RFP goes a bit beyond this in detail, but I don't

think we can refine what we already have any further without

losing compilability. To see how it might look, we refine,

as best we can, the task ATMOS_SENSOR.

XXll-7

task ATMOS_SENSOR is

entry CO2_DATA;

entry CONTAMINANT_DATA;

end ATMOS_SENSOR;

task body ATMOS_SENSOR is

CO2: fixed

CONTAMINANTS: ARRAY (I..S) of fixed;

begin

select

accept CO2_DATA

do _et (C02);

end C02_DATA;

or

accept CONTAMINANT_DATA

do _ (CONTAMINANTS);

end CONTAMINANT_DATA;

end select;

end ATMOS_SENSOR;

At this point we begin to see some of the limitations

of Ada for software specification and prototyping. We are

told by the RFP that there are contaminants to worry about,

but no details about what they might be, or even their

number. Thus we must introduce a variable S for their

number which i5 to be filled in later. Also we are

assuming we need only one number, a component of the array

CONTAMINANT_DATA, to specify the extent of a particular

contaminant.

Here are some comments about the coding for tasks. Ada

makes provisions for a rendezvous so that concurrently

running tasks may communicate with each other. We are

assuming that there are some kind of lines or other input

into the central processor bringing in signals telling how

much carbon dioxide there is, etc. The 'select' statement

chooses between the two 'accept' statements; in what sense

it alternates at random between the two depends on the

particular implementation of Ada; with additional coding one

can make this more precise and independent of the

implementation. Finally, the command g_t is not standard

Ada and needs to be defined further.

Another Approach. Following the first philosophy that

once coded, a package or subprogram should not have to be

recompiled, barring mistakes, we could rewrite the preceding

code. We would need to redo it as a flat horizontal design

using procedures with body stubs. The idea is to specify

declarations without having to write the bodies, which will

be filled in later. Since the RFP is so limited in detail,

XXll-8

this did not seem worthwhile to pursue. Those familiar

with Ada will readily see how this can be done.

Comments. This style of programming raises a number

of questions which must be answered before full scale coding

is undertaking. Should one use procedures or packages?

(At least one procedure is needed to start execution,

according to Ada rules.) This last comment centers around

the question alluded to earlier. How should the Ada

library of packages and subprograms be organized and

extended: by units which are compiled once and more units

added on down the road, or with units that are to be

continually recompiled?

Clearly many more tasks are going to have to be created

to accommodate all the simultaneous sensing, controlling and

potential alarming that must be done. But before this can

be done, we need to know the configuration of computers and

the processes to be run on each.

Now this configuration may well be specified by data

flow diagrams. This is something Ada does not support, and

it is perhaps the most serious drawback to using Ada as a

specification language. See [Buhr] pp. 83-86 and pp.
94-101 for an extended discussion of this important issue.

XXII-9

IV. CRITIQUE

In this chapter we address problems encountered in

attempting to code immediately the specification and

prototyping of the software for the breadboard. We break

these up into software and hardware difficulties. First

though we recall some of the strengths of Ada.

In Praise of Ada. Of the four ways to evaluate

languages set forth in my earlier report [Knol], only one,

the method of qualitative matrices, has been done in depth

for more than a few languages. For each of the various

language features needed in the matrix for the Space

Station, Ada generally does as well or better than any of

the other languages surveyed.

Ada solely by itself would be hard to use. Within a

good support environment it becomes a productive tool. The

article by Vittorio Frigo has much praise for the VAX Ada

tools written by the Digital Equipment Corporation,

otherwise known as APSE, and was written after the author

had written and debugged an application program. Frigo had

minor complaints about the trickiness of dealing with syntax

in the language-sensitive editor and the difficulty of

learning the debugger. But overall he was impressed by

DEC's software support.

Software Difficulties. We present four problem areas.

Separate compilation of specifications and bodies of

subprograms is a powerful feature of Ada which encourages

modularization. Clearly it should make possible top-down

design of the software. However there are limits. In the

Ada library, units can be compiled separately, and linked

together according to their dependencies. Unfortunately

these dependencies are not made explicit by the Ada library.

A programmer must keep a separate log of these dependencies

together with what has been compiled.

In Ada there are lots of data types and woe to the

programmer who attempts to violate the strong typing
constraints. Data has to be typed and declared to some

extent in Ada. Unfortunately, many times in the initial

stages of specification we would like not to do this, and

instead only say that some kind of unspecified data is to be

XXII-10

passed. The difficulty here is that initially we may not

know enough to satisfy the typing requirements of Ada. For

example, contaminants are mentioned in the RFP. But not

how many or how they are to be measured so that suitable

ranges for their values may be specified. Thus we are

stymied in our attempt to sketch out the overall structure

of the software directly in Ada code.

Another nice feature of Ada is the provision for stubs

in subprocedures. When a procedure Q within another

procedure is incompletely known, we can simply write:

procedure Q is separate;

When finally Q is figured out, we can write the

appropriate compilable package. The shortcoming of this

feature is that partial information about the procedure can

not be written in; we must keep it on a separate piece of

paper. We can not simply work on the procedure until our

fund of knowledge for it exhausted, stop and then compile.

This is perhaps natural in terms of designing a workable

compiler but it has the disadvantage of forcing a certain

coarse granularity into the specification process.

Hardware Specifications. The last point concerns when

coding should start vis-a-vis the specification and design

of the hardware. Ada programming can start earlier than

with most languages. But it is premature to start

programming now, as was attempted in this project. To

proceed further at this point we need further information on

both the hardware and software to be designed. And on

projects in general when should programming start? There

needs to be a substantial understanding of the specific

computers to be used, their configuration, the input and
output to each and the data flow among them, before code can

be committed to the library and hence before high-level

specification can begin. Also we must decide how to

organize the upper levels of the tree of packages and

procedures, and how to manage the library.

XXII-ll

V. SOLUTIONS

Recommendation. Our principal finding is that it is

premature to start programming in Ada right away. We can

either try some of the specification tools extending Ada,

described below, or better yet employ the old fashion

solution of a good English exposition of the specifications.

When used correctly, concisely and accurately, our mother

tongue can serve us well. Fuzzy thinking and poorly

planned hardware of course will get in the way But this is

not the fault of the Queen's English. As the specification

moves along, gathering up more and more detail, appropriate

mathematical and technical jargon should be introduced as

necessary to clarify. Then program in Ada.

Specification. SSE. Lockheed has been awarded the

contract to build a Software Support Environment for the

Space Station. The requirements specification for this

package will be available soon. There will be four

subpackages (re)programmed in Ada. These package will be

designed around the Apollo work stations.

This SSE will greatly affect how we proceed. In

particular how will it contribute to top-down design? Into

the SSE should be incorporated a scheme for managing and

structuring the Ada library. Also there should be

provisions for simulating the stubs in the subprograms so

that the software can be run, even though it is not

completed.

TAGS. Teledyne-Brown is developing the design tool

called Technology for the Automatic Generation of Software.

This promises to generate code automatically from detailed

diagrams cf data flow. It is hierarchically organized so

that the design can be done top-down directly from the

engineering specifications of the hardware whose software is

to be coded.

We see at least three problems if this computer-aided

specifier were to be used to produce Ada coding for the

Space Station. First the emphasis is on detailed flow

charts; but the detail may not be initially available.

Also many computer scientists do not consider flow charting

the best way to organize a program in order to show the tree

structure of dependencies of its various parts.

XXII-12

Nevertheless this points up to the need for the

specification of data flow at an early stage, which Ada,
because of its strong typing, inhibits. Recommendation:

into the SSE incorporate the specification early on of data
flow.

TAGS seems to be making an end run around Ada by

inventing a quite different language for the specification

of the software, and only when this is completed in detail

do we see Ada code generated. It would seem better to

extend Ada as necessary to generate high-level

specifications so that one eases naturally into the finished

coding, all done in Ada.

Finally, not all features of Ada will be used in the

automatic generation of the final code. This raises serious

questions. Does this take full advantage of Ada? Is this
really subsetting in disguise? Does it satisfy the mandate

to program the Space Station in Ada?

In this connection we mention the book of Buhr, which

has in chapter 3 a scheme of pictures, reminiscent of the
flow charts of TAGS for notating data flow.

Prototyping Language. What is proposed here is a

high-order language to be used for both specification and

prototyping of software. It should be superimposed on top
of Ada. Presumably it would be part of the SSE.

Anna. An example of this is the extensive project

[LNR] now under way at Stanford university to develop what
they call a wide spectrum language. In their words, "a wide

spectrum language is a notation for describing the intended

behavior of a system and the implementation of that
behavior. The notation for intended behavior is usually

based on a formal logic or algebra and describes what the

system will do in formal terms. The implementation
notation is usually concerned with efficiency of execution

on hardware, and describes how the system will operate in

great detail."

There are two major components of their system: Anna, a

language for specifying Ada software; and TSL, Task

Sequencing Language, a language for specifying distributed

Ada systems. There were four principal considerations for

Ada. In there words, "constructing annotations should be

easy for the Ada programmer Anna should provide

language features that are widely used in the specification
and documentation of programs. Anna should provide a

XXII-13

framework within which the various established theories of

formally specifying and verifying programs may be applied to

Ada. Annotations should be equally well suited for

different applications during the life cycle of a program."

These brief excerpts do not do justice to this

excellent and ambitious project; there are several parts and

many more auxiliary tools not mentioned here. It is highly

recommended that NASA get the latest documentation to study

this system in more detail.

Al_ebra. There is a rigorous theory of the algebra of

abstract data types, on which are based a number of

languages, some already in existence and some still on

paper. This is another approach to prototyping since in

the algebraic theory one need not give algorithms for the

operations to be performed in a procedure but, for the

purposes of prototyping, one may simply give a short but

complete set of properties or relationships which they must

satisfy.

One such language is UMIST OBJ, outlined in the paper

[GC]. As all such languages are, it is based on equational

logic, given in axioms (i) to (v) of the paper. However to

express the typical properties needed in computer science it

is necessary to accommodate conditionals, i.e., implications

and partial operations, which will encompass such things as

popping empty stacks.

Unfortunately the authors of this paper seem to forget

that the axioms they give must be considerably modified and

extended to include these more general staements or

pseudoequations. Nevertheless, it is known how to set

things up to include these more general specifications (See

[Kno3] and [Kno4]).

Along these same lines is the prototyping system of B.

Belkhouche [Bel]. He describes a system for translating

abstract data types into actual code. He was heading for

code in the language PL/I but his source output file in

Appendix A has an uncanny resemblance to Ada syntax. So

Ada generics could have been used here to generate

compilable code better than his PL/I code.

Other. In this last section are collected an

assortment of miscellaneous suggestions for capitalizing on

Ada.

XXII-14

Expertise. Marshall S. F. C. should develop an

expertise in Ada. Several local people should learn it

well and become familiar with its many facets and the

literature describing and documenting the controversial

issues surrounding this large and extensive language.

In this connection, an Ada library should be developed

and include selected books, journals, video courses, and

reports from our sister NASA sites.

Information. More information on the breadboard needs

to be known. Have written down what the scope of the

breadboard is to be; what it is to accomplish; and what is

to be learned. Have written down the scope of the

programming effort.

Miscellaneous. It almost goes without saying, do

strong typing, and even make it stronger than Ada demands.

In the article [ACGE] are solutions to some common

problems with Ada:

To reduce the depth of nesting, see p. 142;

Whether to decompose large programs into library

units or subunits, see p. 161;

For how Ada may affect the specification phase in

the life cycle, see p. 176.

In designing the breadboard, gain practice and

experience in recognizing where (see [ACGE]) generics can be

used to avoid duplicating common code.

Final observation. To anticipate changes in

'maintenance', modularize according to accepted concepts in

the field of application.

XXII-15

VI. SUMMARY

This study reports on exercises done to see how well

the programming language Ada supports high-level

specification and prototyping. The conclusion to be drawn

so far is that while Ada has a number of strong

modularization features which allow for some incompleteness

in coding, its strong typing prevents it from being used at

the very start of a project, and most programmers will want

some assistance with data flow, which Ada does not provide.

The recommendation is to use English as the specification

language as in the past, and perhaps extend Ada so that some

of the detailed design is possible within an essentially Ada

context.

Afterthought

Let me close with a philosophical thought. I

sometimes think that my counterparts here feel that after an

easy year in academia, we fellows should be made to do some

honest work during the summer. On the other side of the

coin, many fellows will agree with the sentiment found back

home in our departments that, after working hard during the

academic year, its nice for you fellows to get a paid

vacation at NASA. With this in mind, I leave you with this

quote.

"It is impossible to enjoy idling thoroughly unless one

has plenty of work to do."

J. K. Jerome

Postscript

(Added in press) At several places in this report it

has been noted that further coding was stymied by a lack of

knowledge of the breadboard for the core module, apparently

due to its nonexistence. Surprisingly, and unknown to this

fellow during most of the time while he was engaged in this

project, there are two working models of the common module

in building 4755. The module being built by NASA already

has two units to recover carbon dioxide and an oxygen

generator.

The core module built by Martin-Marietta is extensive.

XXII-16

In addition to carbon dioxide recovery and oxygen

generation, there are also power handling units at three

different frequencies, heat removal and automatic balancing,

human waste disposal and a trash compactor. There is model

software, originally written in C and recently transported

to Ada! A user interface is provided.

What has been learned from designing, constructing,

programming and operating these two modules should be

compared with this report.

If information on these core modules had been provided

to this faculty fellow early in the summer, this report

would definitely be different.

XXII-17

REFERENCES

[ACD] Architectural Control Document -- Data

Management System. Space Station Program Office, Johnson

Space Center, NASA. Jan. 1987.

[ACGE] Christine N. Ausnit; Norman H. Cohen; John B.

Goodenough & R. Sterling Eanes. Ada in Practice.

Springer-Verlag, 1985.

[Bran] A. E. Brandli. Operations Management System

(OMS). Viewgraphs, prepared in the Avionics Systems

Division, Johnson Space Center, NASA. Aug. 1986.

[Belk] Boumediene Belkhouche. Compilation of

Specification Languages as a Basis for Rapid and Efficient

Prototyping. Third International Workshop on Software

Specification and Design, Aug. 26-27, 1985, London. IEEE

Computer Science Press. 1985.

[BGS] Barry W. Boehm; Terence E. Gray & Thomas

Seewaldt. Prototyping versus specifying: a multiproject

experiment. IEEE Transactions on Software Engineering,

SE-IO (Hay 1984), pp. 290-302.

[Buhr] R. J. A. Buhr.

Pre_itice-Hall, 1984.

System Design with Ada.

[Frigo] G. Vittorio Frigo. Evaluation of the VAX Ada

compiler and APSE by means of a real program. Ada Letters 7

(May, June 1987), pp. 94-106.

[GC] R. M. Gallimore & D. Coleman. Algebra in

Software Engineering. Third International Workshop on

Software Specification and Design, Aug. 28-27, 1985, London.

IEEE Computer Science Press. 1985.

[HI] S. Hekmatpour & D. C. Ince. Rapid software

prototyping. In Oxford Surveys in Information Technology 3,

F. I. Zorkoczy, ed., Oxford Univ. Press, 1986. pp. 37-76.

[IEEE] IEEE Computer Society. Ada as a Program Design

Langua&e. IEEE Standard 990-1987. (To appear 1987).

[LNR]

Rosenblum.

David C. Luckham; Randall Neff & David S.

An environment for Ada software development

XXII-18

based on formal specification.

1987), pp. 84-93.
Ada Letters 7 (May, June

[Knol] Arthur Knoebel. Analysis of high-order

languages for use on the Space Station application software,

in Research Reports -- 1985 NASA/ASEE Summer Faculty

Fellowship Program. NASA CR-178709, Jan. 1986.

[Kno2] Benchmarks of programming

languages for special purposes in the Space Station, in

Research Reports -- 1986 NASA/ASEE Summer Faculty Fellowship
Program. NASA CR-!78966, Nov. 1986.

[Kno3] "

abstract data types.

" A tripartite specification of

(Article submitted).

[Kno4] "

Abstract Data Types.
" The Algebraic Theory of

(Book in preparation).

[NW] John Nissen & Peter Wallis. Portability and

Style in Ada. Cambridge Univ. Press, 1984.

[RFP] Request for Proposal. Software Requirements

Specification, Attachment A for the Space Station United

States Laboratory Module. SS-SPEC-0002, Marshall Space
Flight Center, 15 Dec. 1986.

[Rog] M. W. Rogers. Ada: Language, Compilers and

Bibliography. Cambridge Univ. Press, 1984.

XXII-19

